If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-18x+6x+7+12x-10=0
We add all the numbers together, and all the variables
6x^2-3=0
a = 6; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·6·(-3)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*6}=\frac{0-6\sqrt{2}}{12} =-\frac{6\sqrt{2}}{12} =-\frac{\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*6}=\frac{0+6\sqrt{2}}{12} =\frac{6\sqrt{2}}{12} =\frac{\sqrt{2}}{2} $
| 8y^2-9y+4=0 | | 8x+76=2x+6 | | X^2+16x=-61 | | 321.5=16n-25.5 | | F(x)=-3x^2-x+7 | | 3+4d=29 | | 90+-2x+68+4x=180 | | 1.4k=5,25 | | -18=7u | | x+X-6O=0 | | x-11^1/2+30=0 | | X+1=-7x+9 | | 24x+18x+18x=180 | | -2/5x=1/4-39 | | -75=1/2y | | 8-3x=-23 | | 5(2x-x)-3(4-2x)=20 | | 2/3n+4=-24 | | x-9^1/2+20=0 | | 5x+6x+24+x=180 | | -2(x-4)=10x-2 | | 6x+3(x-7)=-9 | | 5(-3x+2)-2x-2=-11+ | | y/4-5=-1 | | 7(d+3)-2d=2d+18 | | -1/9x=-5 | | 7(4x-9)=32 | | Y=4x-3=2 | | A=3.14x10x13 | | 14-(m+9)=20+(3m-16)+15 | | Y=4x-3=1 | | 3x+19-10=180 |